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Abstract. Automated visual analysis is an effective method for under-
standing changes in natural phenomena over massive city-scale land-
scapes. However, the view-point spectrum across which image data can
be acquired is extremely wide, ranging from macro-level overhead (aerial)
images spanning several kilometers to micro-level front-parallel (street-
view) images that might only span a few meters. This work presents
a unified framework for robustly integrating image data taken at vastly
different viewpoints to generate large-scale estimates of land surface con-
ditions. To validate our approach we attempt to estimate the amount of
post-Tsunami damage over the entire city of Kamaishi, Japan (over 4 mil-
lion square-meters). Our results show that our approach can efficiently
integrate both micro and macro-level images, along with other forms of
meta-data, to efficiently estimate city-scale phenomena. We evaluate our
approach on two modes of land condition analysis, namely, city-scale
debris and greenery estimation, to show the ability of our method to
generalize to a diverse set of estimation tasks.

1 Introduction

We address the task of estimating large-scale land surface conditions using over-
head aerial (macro-level) images and street view (micro-level) images. These two
types of images are captured from orthogonal viewpoints and have different res-
olutions, thus conveying very different types of information that can be used in a
complementary way. Moreover, their integration is necessary to make it possible
to accurately understand changes in natural phenomena over massive city-scale
landscapes.

Aerial images are an excellent source for collecting wide-area information of
land surface conditions. However, it may come at the cost of a lower resolution
(i.e., number of pixels per meter) and visiblity may drastically change depending
on the weather. For example, clouds may obscure the visibility of the land surface
(Fig. 1). A more important limitation of aerial images is that they are limited to
a vertical (top-down) perspective of the ground surface, such that areas occluded
by a roof or highway overpass are not visible to the camera (first and second row
of Fig. 2) making it difficult to estimate land conditions in covered areas.

Street-view images, on the other hand, captured from the ground-level can
obtain higher resolution images of vertical structures and have better access to
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Fig. 1. Aerial images affected by weather condition (Left: March 11, 2011, Right: March
31, 2011). The land surface might be covered by clouds and illumination conditions
change drastically in aerial image.

information about covered areas. They are also less affected by weather con-
ditions. In the same token however, street view images are constrained to the
ground plane and a single image has limited physical range. It is also labor in-
tensive to acquire street-level images of large land surface areas (i.e., millions of
square meters).

The key technical challenge is devising a method to integrate these two dis-
parate types of image data in an effective manner, while leveraging the wide
coverage capabilities of macro-level images and detailed resolution of micro-level
images. The strategy proposed in the work uses macro-level imaging to learn
land condition correspondences between land regions that share similar visual
characteristics (e.g, mountains, streets, buildings, rivers), while micro-level im-
ages are used to acquire high resolution statistics of land conditions (e.g., the
amount of debris on the ground). By combining the macro and micro level in-
formation about region correspondences and surface conditions, our proposed
method generates detailed estimates of land surface conditions over the entire
city.

The technical contribution of this paper is a novel procedure for generalizing
from a sparse set of visual recognition results to a large-scale land condition
regression estimate. The proposed system carefully brings together the state-
of-the-art algorithms for semantic scene understanding, structure-from-motion
and non-parametric regression to generate a massive city-scale land condition
probability map (Fig.3). To the best of our knowledge, this is the first work
of its kind to use sparse image-based street-level object recognition results to
extrapolate the surface conditions of an entire city (over 4 million square meters).

Although our method can generalize to different types of large-scale phe-
nomena, we ground our proposed approach in a real-world application of post-
Tsunami city-scale damage estimation. In regions affected by such disasters, it is
extremely hard to efficiently assess the large-scale impact of a natural disaster.
Technologies that enable fast and efficient city-scale estimates of damage can be
extremely helpful for expediting aid to seriously damages areas. The approach
describe in this paper can also be used for long-term analysis by monitoring and
tracking recovery efforts.
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Fig. 2. Example aerial and street-view images. There are many cases in which aerial
images and street-view images give complementary information about the land surface
condition. For example, the areas covered by the building roof (the top and second
row), stacked objects (the bottom row) are best viewed from the street.
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Fig. 3. Data flow diagram of city-scale estimation of land surface condition. Our ap-
proach efficiently integrates both micro (street-view) and macro-level (aerial) images
along with other forms of meta-data to estimate city-scale land surface condition.

2 Related work

There has been significant advances in the state-of-the-art techniques for quanti-
tative geometric interpretations of large-scale city scenes. Methods for city-scale
3D reconstruction have been proposed using thousands of images gathered from
Internet images [1, 2]. Similar techniques have been proposed for images captured
by a vehicle-mounted camera [3, 4] or aerial images [5–7]. Street-view images have
also been combined with aerial images for the purpose of improving 3D recon-
struction, where 3D point clouds have been projected to the ground plane and
aligned with edges of buildings detected from aerial images [8] or building maps
[9]. There has also been work using aerial and street view images taken several
months or decades apart [10–14] to understand temporal changes of a scene. The
focus of these previous approaches are on a quantitative geometric interpretation
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of the scene where local visual features are matched directly to estimate camera
pose using epipolar geometry [15]. In this work we aim to push beyond a purely
geometric understanding of the scene towards a more qualitative understand-
ing of city conditions. For instance, we not only interested in the 3D geometry
of a building but would also like to know the condition of the building or the
condition of the ground surrounding a building.

There also has been work focused on the qualitative estimation of land con-
dition over large-scale environments. In the field of remote sensing, coarse land
surface conditions have been estimated using aerial color images, aerial infrared
light and aerial microwave sensing [16–21]. Color aerial images have been ap-
plied to land condition estimation for vegetation monitoring [22–24], land cover
mapping, and flood risk and damage assessment [25, 26]. For example, forest
maps [27–29] are an important source of information for monitoring and reduc-
ing deforestation, allowing environmental scientists to know how forested areas
increase or decrease in over the entire earth.

Apart from aerial imaging using color cameras, many other modes of sensing
have been proposed for estimating coarse large-scale land surface conditions.
Digital elevation map (DEM) [27], Spectroradiometer (MODIS), high resolution
radiometer (AVHRR) and Synthetic Aperture Radar (SAR) have been proposed
to improve accuracy of estimating large-scale land surface condition. However
the resolution of satellite-mounted MODIS and AVHRR only measure surface
conditions over a very rough resolution – typically over a cell size of a several
hundred meters. As such, these works do not utilize street-level sensing which
are too detailed for their estimation task. However, in this work we are interested
in a much high resolution estimate of land conditions on a cell size closer to 20
meters wide.

Our proposed work fills a void between detailed geometric reconstructions
of city-scale structures and coarse qualitative estimation of land conditions. We
use known techniques to provide an accurate geometric model of the city and
use state-of-the-art object recognition results carefully registered to the scene
geometry to understand the qualitative conditions of the entire city.

3 Large-scale estimation of land surface condition

Our framework integrates aerial and street-view images to estimate land surface
conditions. In this section, we explain the details of the proposed method contex-
tualized for post-Tsunami debris detection. Although the following explanation
takes debris as an example, the method is generally applicable to other types
of land surface conditions. The proposed method consists of the following three
steps;

(i) Debris detection on perspective street-view image. (sec.3.1)
(ii) Projection of debris probabilities on street-view images to the ground using

building contours. (sec.3.2)
(iii) Estimation of debris over an entire city by integrating the projection result

with all other data (e.g. aerial image, DEM) using a Gaussian process.(sec.3.3)
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Fig. 4. Data flow diagram of debris detection. As features of debris, the probabilities
of geometric context, specific object recognition and patch features are employed.

In the first step, the probability map of debris is calculated for each street-
view image. Then, using the camera parameters for the street-view image, the
probability map is projected onto the ground plane registered to a corresponding
part of the aerial image.This projection method takes the existence of building
walls into consideration. Finally in order to complement the estimation results
obtained from street-view images, the projected probability map is integrated
with the information obtained from aerial images and DEM using Gaussian
process regression model.

3.1 Debris detection

We developed a method to calculate the probability map of debris (Fig. 4). The
debris model is learned from a hand-labeled training image.The debris in the
images are irregular, complicated in shape and appearance. Therefore, we exploit
Geometric Context [30] as geometric feature and pixel-wise object probability
[31] as an appearance feature. Geometric Context estimates the probabilities
that a super-pixel belongs to seven classes. We chose four of the seven classes,
”ground plane”, ”sky”, ”porous non-planar” and ”solid non-planar”, and used
the probabilities of them as debris features. The pixel-wise object probability
pobject is calculated using [31], Lab, HOG[32], BRIEF[33] and ORB[34]. The
feature vector of debris is as follows.

x = (pground, psky, pporous, psolid, pobject,mpatch, vpatch)
T
, (1)

where pground, psky, pporous and psolid are the probabilities of ”ground plane”,
”sky”, ”porous non-planar” and ”solid non-planar”, respectively. In addition to
these probabilities, mean mpatch and variance vpatch of grayscale patch (5 × 5)
are added to the features.

We evaluated the accuracy of our debris detector. We made two datasets
for the evaluation. Figure 5 shows an example of the datasets and detection
results. Each dataset consists of fifty images of debris. The images in two data
set were taken in different date and time. We compared random forest [35],
logistic regression [36] and support vector machine [37]. Figure 6 shows the F1-
scores of the debris detections. We chose the random forest as our debris detector
for all experiments because the score of random forest regressor is the best.
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(a) Input image (b) Ground truth (c) Apperance-based (d) Detected debris

(e) Ground (f) Sky (g) Solid (h) Porous

Fig. 5. Inputs and outputs of debris detection. First rows: (a) input image. (b) hand-
labeled ground truth of debris. (c) result of specific object recognition. (d) final result
of debris detection. Second rows: probability of geometric context (e) ground plane,
(f) sky, (g) solid non-planar, (h) porous non-planar. Color denotes probability of each
class, with blue corresponding to 0 and red to 1.
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Fig. 6. F1-score of debris detection.

3.2 Projection of debris probabilities onto the ground

The debris probability explained in the previous section is the probability map on
the street-view image. In order to integrate this probability map with the aerial
image, the debris probability is projected onto the ground plane. Figure 7 shows
the data flow diagram of projection of street-view image to the coordinate of
the aerial image. The projection requires camera parameters of each street-view
image. First, we performed Structure from Motion (SfM) to acquire the camera
trajectories. We employ a standard SfM method [15, 38, 39] with extensions to
deal with omni-directional images [4]. The estimated camera trajectories are
fitted to the GPS trajectory by similarity transformations in a least squares
sense.

Dividing the ground plane into a grid, we project the debris probability to
the grid using projection matrix of each image. In this projection, we use the 3D
models of the buildings that are generated from a 2D map of the city (Sec. 4.2).
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Fig. 7. Data flow diagram of the projection onto the ground plane. SfM is performed
using omnidirectional street-view images. The street-view camera poses are registered
to a common coordinate with aerial images and other forms of meta-data using the
GPS data. After debris detection, the debris probabilities are projected to the ground
plane.
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Fig. 8. Projection of probabilities on street-view images to the grids of the ground
plane using building information. Left: The probabilities on a street-view image are
projected to a building wall if the building is on the projection path, otherwise it is
projected to the ground directly. Right: Example of projection results (top-view). The
area unobserved from street-view images is shown in white.

To be specific, the debris probability is projected to a building wall if the wall
is on the projection path, and otherwise it is directly projected to the ground,
as shown in Fig. 8.

3.3 Integration using Gaussian Process regression

The projected debris probability map obtained up to now has no information
for some areas because of occlusions or the lack of street-level images, as shown
in Fig. 8. Estimating debris probability map from only an aerial image is dif-
ficult due to its low-resolution, occlusion or weather conditions. To mutually
complement the street-view images and the aerial image, we used a Gaussian
process regression model[40]. The main idea here is that similar geographical
location tend to have similar debris probability. In the case of Tsunami-disaster,
Tsunami continuously spreads from seashore to hill side, which means the dam-
age caused by Tsunami has strong correlation with the location, especially with
the elevation.
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As described in the previous section, the debris probability of each grid ps,i
(i = 1, ..., n) is estimated from the street-view images. For each grid, its feature
vector xi is defined as follows.

xi = (xi, yi, zi, pa,i)
T

(2)

where (xi, yi) is a center position of each grid, zi is a elevation of each grid
calculated from DEM and pa,i is debris probability of each grid estimated from
aerial image using pixel-wise object recognition[31]. The column vector xi for all
n grid are aggregated in the 4 × n training inputs matrix X, and the training
outputs ps,i are collected in the vector y.

xi contains pa,i as the visual feature of the ith grid. Although pa,i is a scalar,
due to the pixel-wise object recognition[31], it summarizes the visual informa-
tion of the ith grid. Compared to using general visual feature descriptors, such
as SIFT[38], directly in the feature vector xi, pa,i saves computational resources
required in the following calculation of covariance function. The covariance func-
tion for Gaussian process regression in the proposed method is as follows.

k(xp,xq) = σf
2 exp

(
− 1

2l2
|W (xp − xq) |2

)
+ σn

2δpq (3)

where W is the weight diagonal matrix, l is the length-scale, σf
2 is the signal

variance, σn
2 is the noise variance and δpq is a Kronecker delta which is one

if p = q and zero otherwise. Test input x? is each grid feature vector and test
output is debris probability of each grid f?.

The key insight to note here is that the output of the aerial image regressor
pa,i enforces a correlation between parts of the scene that look similar. If two
parts of the scene belong to an open field, the per-pixel response of the aerial
object detection regressor will produce a similar response. The DEM also works
in a similar manner to draw correlations between regions with similar elevation.
The location feature enforces local smoothness over the final estimate of debris
over the city. When the feature vectors xi are used to compute the covariance
function, regions that are similar in appearance and elevation will be constrained
to have similar target values (debris estimates generated by high resolution debris
regressor computed on the street images). In this way, the Gaussian process
regression model is able to propagate local estimates of debris to the entire map.
This regression mechanism is what allows our model to effectively estimate debris
over the entire city from only a sparse set of street view debris estimation results.

4 Experimental results

In order to evaluate the effectiveness of our proposed approach for estimating
large-scale land conditions, we perform two experiments. Our first experiment
is a comprehensive ablative analysis to examine the benefit of integrating micro
and macro-level imagery for city-scale land condition estimation. In addition to
color imaging, we also evaluate the contributions of two other modes of data,
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Fig. 9. Estimation target area in Kamaishi on March 31st, 2011 (left) and its hand-
labeled ground truth of debris area (right). White area shows debris area.

namely, a digital elevation map (DEM) and building occupancy maps (BOM).
In our second experiment, we focus on estimating the amount of greenery and
vegetation across the entire city of Kamaishi. We use the exact same approach as
the debris estimation described in this paper and apply it to greenery estimation.
Our results show that our approach is not limited to post-disaster analysis but
can easily be applied to other modes of land condition analysis.

We created the ground truth labels used for the following evaluation by many
hours of manual labeling of regions on the aerial images. Ground truth data of
debris and greenery were generated by visual inspection by comparing the aerial
image against the street-view images available on Google Earth. Many hours of
ground truth labeling confirms that the manual inspection of large-scale land
conditions is not a practical solution for real-world applications.

4.1 Our data

Our experiment includes two image-based input modalities and two sources of
city-scale meta-data, which are described below.

Street images. We have been creating image archives of urban and residential
areas damaged by Great East Japan Earthquake in 2011.The target area is 500
kilometers long along the northern-east coastal line in Japan. The images were
captured every three to four months by a vehicle having an omni-directional
camera (Ladybug 3 and 5 of Point Grey Research Inc.) on its roof. The image
data accumulated so far amount to about 20 terabytes. The target of this ex-
periment is the entire city of Kamaishi, Japan (over 4 million square-meters).
For the experiments, we chose the two image sequences captured on April 26th,
2011 (one month after the Tsunami) and August 17th, 2013 (two years and
five months after the Tsunami). The debris can often be seen in the earlier im-
ages, while they tend to disappear in the later images as the recovery operation
proceeds.

The street images are used for appearance-based recognition of ‘stuff’ [41]
described in Section 3.1. The results of pixel-wise regression are then projected
onto the ground plane as an input feature for our city-scale GP regressor.
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Aerial images We downloaded aerial images from Google Earth for March 31st,
2011 and May 13th, 2012. We chose these dates to match up the timestamp of
the street images.

We used the aerial images for appearance-based recognition of ‘stuff’ cate-
gories using the same method describe in Section 3.1 but applied to the entire
aerial image as a comparative baseline. We used the aerial images of May 13th,
2012 as the labeled training data and test on the March 31st, 2011 aerial image.
Figure 9 shows an example of the hand-labeled ground truth of the debris area
on the aerial images.
Digital Elevation Map (DEM). We obtained the DEM information freely
available from the Geospatial Information Authority, under the Ministry of Land,
Infrastructure, Transportation and Tourism in Japan. The mesh resolution of the
DEM is 5×5 square-meters and contains the elevation level for each grid location.
The elevation is used directly as a feature for the city-scale GP regression.
Building Occupancy Map (BOM) The BOM provides building contours. We
obtained the data from Zenrin Company. The building contour data used for this
experiment was made before the earthquake. We used the BOM to prevent ’stuff’
from being projected onto the ground over building location.

4.2 Ablative Analysis

We examine the effects of each input data type on the overall performance of
our proposed approach. Figure 10 shows the estimation results of the debris
amounts in the entire city on April 26th, 2011 and August 17th, 2013, respec-
tively. The lines on the aerial images are the camera trajectories. Figure 11 shows
the performance of our debris detection by PR-plot and F1-score using different
combination of input data. The results indicate that using aerial images alone
yields low performance because the appearance of land conditions can change
significantly over time due to changes in imaging conditions. When compared
to the independent use of aerial images, our results indicate that street images
are more accurate for estimating city-scale debris. Furthermore, when both aerial
and street images are combined we obtain better performance as the aerial infor-
mation helps the city-scale GP regression to generalize to across similar looking
city regions.

Additionally, we evaluated the effects of each input data type and different
number of street-view images in three different streets. Figures 12 (i)-(iii) show
input aerial images of target areas. Figure 13 shows precision-recall curve (Left)
and F1-scores (Right, recall=0.5) of the debris area detection. We examined
the detection performance for a specific area. The effect of different input type
is different depending on the area-condition. For example, aerial image could
cause errors in occluded areas we mentioned in the introduction, and DEM
information could cause errors because its elevation includes height of building.
However, street-view images basically provide detailed and accurate information
of land-surface condition.

We also tested the effect of street coverage. Figure 14 shows the F1-score of
different number of street-view images. In this experiment, we randomly sam-
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Fig. 10. City-scale Debris Probability in Kamaishi before and after the recovery op-
eration (Left: April 26th, 2011, Right: August 17th, 2013). In the earlier images, there
are much debris in the entire city, however, most of them have been cleaned up in later
images. The city-scale temporal change is estimated and visualized accurately by our
approach. Color denotes probability of debris, with blue corresponding to 0 and red to
1.
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Fig. 11. Precision-recall curve of the debris area detection whose ground truth is Fig.
9. These figures show that the integration of street-view image with aerial image is
efficient to estimate city-scale land surface condition.

pled street-view images. The accuracy improves as we add more images, but
it quickly saturates. This indicates our algorithm needs only sparse street-view
images. The sparse sampling requirement of our algorithm is beneficial in many
other applications, for example, large scale citizen science or journalism in which
images captured at the scene are sent to cloud computers to analyze city scale
condition.

4.3 Extensions to City-Scale Vegetation Estimation

We applied our method to vegetation detection, to show how our approach can
generalize to other modes of land condition estimation. Figure 15 shows an
example of vegetation estimation in street-level images. The green vegetation
detected in the street-view images is estimated using the same pixel-wise object
recognition method [31].

Figure 16 shows the results of vegetation estimation for the entire city. By
observing the vegetation heat map for the entire city, it is clear that most of
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the vegetation has been washed away by the Tsunami. There is also a sharp
contrast between the wide spread distribution of debris and the lack of vegetation
in the time period directly after the Tsunami. By 2013 however, we can see a
large increase in the number of regions covered by vegetation. Our successful
vegetation detection indicates that our proposed method can indeed generalize
to different types of targeted estimation of city-scale land conditions.

5 Conclusion

We presented a unified framework for robustly integrating image data taken at
vastly different viewpoints to generate large-scale estimates of land surface con-
ditions. The proposed strategy uses macro-level imaging to learn land condition
correspondences between land regions that share similar visual characteristics,
while micro-level images are used to acquire high resolution statistics of land
conditions. For the validation of our approach, we conducted experiments to
estimate the amount of post-Tsunami damage over the entire city of Kamaishi,
Japan. The experimental results show that our approach can effectively integrate
both macro (aerial) and micro-level (street view) images, along with other forms
of meta-data, to estimate city-scale phenomena.

Furthermore, we showed that our detection method can be successfully ap-
plied to vegetation estimation. The results indicate our method can generalize
well to many kinds of applications to estimate city-scale phenomena by replac-
ing the detector target, for example, human flow, real-estate and dirt quality.
These types of image data are available from many kinds of data sources, such
as camera equipped mobile devices, surveillance cameras and car-mounted video
recorders, or aerial-vehicle-mounted cameras. Our approach provides an effective
and robust method for integrating different kinds of data to estimate city-scale
phenomena.

For future work, we plan to improve the estimation accuracy of our approach.
Our method has relatively low absolute precision because (i) the grid size is too
large due to limitation of computational resources and (ii) the estimated camera
poses have errors due to GPS errors. We believe that we can solve the first
problem using large-scale Gaussian process [40]. The GPS issue can be addressed
with [8, 9, 42] while taking temporal changes into account. Furthermore, in the
case of extreme calamities, methods will be developed to take into consideration
the complete disappearance of the buildings due to disasters.

Acknowledgements. This work was supported by JSPS KAKENHI Grant
Numbers 25135701, 25280054.
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(i) Street 1 (ii) Street 2 (iii) Street 3

Fig. 12. Target streets of the evaluation of each input data type and different number
of street-view images in our proposed approach.
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Fig. 13. Precision-recall curve (Left) and F1-scores (Right, recall=0.5) of the debris-
area detection. These plots show that the integration of street-view image with aerial
image is effective to estimate the condition of land surface.
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require large number of images.

(a) Input image (b) Ground truth (c) Detected Vegetation

Fig. 15. Green vegetation detection. (a) input image. (b) hand-labeled ground truth
of green vegetation. (c) probability of green vegetation. Color denotes probability of
green vegetation, with blue corresponding to 0 and red to 1.

Fig. 16. City-Scale Vegetation Probability in Kamaishi before and after the recovery
operation (Left: April 26, 2011, Right: August 17, 2013). In contradiction to the de-
bris (Fig. 10), there was no green vegetation due to Tsunami-damage in April, 2011,
however, the vegetation in entire city has grown and recovered until August, 2013. Our
approach can estimate and visualize such changes in natural phenomena over massive
city-scale landscapes. Color denotes probability of green vegetation, with blue corre-
sponding to 0 and red to 1



Massive City-scale Surface Condition Analysis 15

References

1. Snavely, N., Seitz, S.M., Szeliski, R.: Modeling the World from Internet Photo
Collections. IJCV 80 (2007) 189–210

2. Agarwal, S., Snavely, N., Simon, I., Seitz, S.M., Szeliski, R.: Building Rome in a
day. In: ICCV. (2009) 72–79

3. Pollefeys, M., Nistér, D., Frahm, J.M., Akbarzadeh, A., Mordohai, P., Clipp, B.,
Engels, C., Gallup, D., Kim, S.J., Merrell, P., Salmi, C., Sinha, S., Talton, B.,
Wang, L., Yang, Q., Stewénius, H., Yang, R., Welch, G., Towles, H.: Detailed
Real-Time Urban 3D Reconstruction from Video. IJCV 78 (2008) 143–167

4. Torii, A., Havlena, M., Pajdla, T.: From Google Street View to 3D City Models.
In: ICCV Workshops. (2009) 2188–2195

5. Lin, C., Nevatia, R.: Building Detection and Description from a Single Intensity
Image. Computer Vision and Image Understanding 72 (1998) 101–121

6. Suveg, I., Vosselman, G.: Reconstruction of 3D building models from aerial images
and maps. ISPRS Journal of Photogrammetry and Remote Sensing 58 (2004)
202–224

7. Zebedin, L., Klaus, A., Gruber-Geymayer, B., Karner, K.: Towards 3D map gen-
eration from digital aerial images. ISPRS Journal of Photogrammetry and Remote
Sensing 60 (2006) 413–427

8. Kaminsky, R., Snavely, N., Seitz, S., Szeliski, R.: Alignment of 3D Point Clouds
to Overhead Images. CVPR Workshops (2009) 63–70

9. Strecha, C., Pylvanainen, T., Fua, P.: Dynamic and Scalable Large Scale Image
Reconstruction. In: CVPR. (2010) 406–413

10. Huertas, A., Nevatia, R.: Detecting Changes in Aerial Views of Man-Made Struc-
tures. In: ICCV. (1998) 73–80

11. Radke, R.J., Andra, S., Al-Kofahi, O., Roysam, B.: Image Change Detection Algo-
rithms: A Systematic Survey. Transactions on Image Processing 14 (2005) 294–307

12. Pollard, T., Mundy, J.L.: Change Detection in a 3-d World. In: CVPR. (2007) 1–6

13. Schindler, G., Dellaert, F.: Probabilistic temporal inference on reconstructed 3D
scenes. In: CVPR. (2010) 1410–1417

14. Taneja, A., Ballan, L., Pollefeys, M.: City-Scale Change Detection in Cadastral
3D Models Using Images. In: CVPR. (2013) 113–120

15. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision Second
Edition. Cambridge University Press (2004)

16. Li, F., Jacksona, T.J., Kustasa, W.P., Schmuggea, T.J., Frenchb, A.N., Cosha,
M.H., Bindlish, R.: Deriving land surface temperature from Landsat 5 and 7
during SMEX02/SMACEX. Remote Sensing of Environment 92 (2004) 521–534

17. Weng, Q., Lu, D., Schubring, J.: Estimation of land surface temperaturevege-
tation abundance relationship for urban heat island studies. Remote Sensing of
Environment 89 (2004) 467–483

18. Schowengerdt, R.A.: Remote Sensing: Models and Methods for Image Processing.
(2006)

19. Martinez, J., Letoan, T.: Mapping of flood dynamics and spatial distribution
of vegetation in the Amazon floodplain using multitemporal SAR data. Remote
Sensing of Environment 108 (2007) 209–223

20. Weng, Q.: Remote Sensing of Impervious Surfaces. CRC Press (2010)

21. Lu, D., Hetrick, S., Moran, E.: Impervious surface mapping with quickbird imagery.
International journal of remote sensing 32 (2011) 2519–2533



16 Ken Sakurada, Takayuki Okatani, Kris M. Kitani

22. Hall, A., Louis, J., Lamb, D.: Characterising and mapping vineyard canopy using
high-spatial-resolution aerial multispectral images. Computers & Geosciences 29
(2003) 813–822

23. Berni, J.A.J., Member, S., Zarco-tejada, P.J., Suárez, L., Fereres, E.: Thermal and
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